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General Description

Abstract

Developing methods for state estimation and system identification are essential for increasing
the reliability of the power grid. Typically this problem has been solved on steady state time
scales, however faster dynamics are becoming more important and with the deployment of
phasor measurement units (PMUs) fast estimation is now possible. To do this fast estimation a
layered architecture that integrates state estimation, change point detection, and disturbance
classification is used. By thinking of these estimation algorithms along with controls as a
layered system it improves our ability to design optimal architectures that are both fast and
flexible. State Estimation can be achieved using Kalman filtering and particle based techniques
which assume a system topology and dynamics model. These techniques are adapted to the
differential algebraic equations that describe the power system and their robustness is
explored. Using these estimates we can make predictions of the future outputs which then are
compared to the PMU data to identify unexpected deviations. These change points then trigger
a topology change classifier to identify the new topology of the system after a fault and also
triggers a fault tracker to track the state through faults that are cleared. Finally, questions of
general architecture design are raised such as how to optimally link these estimation modules
and optimally place sensors to achieve all these objectives.

Introduction
Obijective:

Develop an architecture to track the dynamic state and topology of a power system over fast, sub-second,
time scales that can then be used to make control decisions.

Power System Model:

Differential Algebraic Equations
ODEs:

 Machine Models .
» Exciter Models } x =t <X7 Y, U)
e Turbine Governor Models

Equality Constraints:

* Bus Power Injections
0=g(x,y,u)
u : Inputs

* Machine Constraints
» Control Constraints
=h u :
} z=h(xy,u) . opservations
» Bus Voltages

Variables

X . Dynamic State

« Generator Angles, Frequencies, Axis Voltages
 Control Internal States

y : Algebraic Variables

» Bus Voltages
» Generator Field Voltages, Powers, Torques
* Control Constraints

Output:

* PMUs

Power System Estimation and Control Architecture

Power System

Sensors: PMUs

Use a PMU placement and
sensor selection strategy that
maximizes the information
gain for this architecture.
Since dynamics are taken into
accountthe systemis
observable with fewer PMUs
than static state estimation.

Control Layer

Based upon the risk and estimates deploy control policies such as state feedback or remedial action schemes.

Forward Prediction

Use the state estimate distribution and the
model to evolve the distribution forward in time
to make a prediction about future outputs.

Gaussian Prediction Model

2k+1:k+m ~ N (Mk+1:k+m, Fk+1:k+m)

Risk Assessment

Use the state estimate distribution, models, and predictions to evaluate
the risk to the power system ie stability analysis or flow constraint
# violations.
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Global State Estimation

Use full dynamic model, global state
estimate, and PMU measurements to
simultaneously estimate all machine
and control states.

Error Measure

E (Zk+1:k+m) —

Local State Fault Tracking

Change Point Detection

Take the forward predictions and evaluate
the errors between the predicted and
observed values. Decide if those errors
are likely caused by a model change.

(Zk—}—l:k—l—m_ﬂk—}—l:k—}—m)

Topology Classification:

Evaluate the relative likelihood of each
model given the observations using the
distribution derived from the forward
prediction.

Bayesian Model Class Selection
P (M; | Zxt1:x4m) < P (Zi1:60m | Mi) P (M)

Tp-1
I‘k+1;k+m(Zk—}—l:k—l—m_ﬂk—l—l:k—{—m)

Update the local state of each device
using the past estimate, local
dynamics, and local PMU
measurement.

«Set error measure threshold to minimize
incorrect detection rate
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Global and Local State Estimation Detaills

State Estimation

Extended Kalman Filter Numerical Integration Methods
Nonlinear System Euler:
Xk = § (Xk—1) + Wk Xk = Xk—1 +f (Xk—1, yx—1) At
Zx = 9 (Xk) + & 0=g(Xk—1,yk-1)
Prediction 0 = g (XK, Yk)
k-1 = § (R-1k-1) Predictor Corrector:
Pik-1 = Fio 1P 1Fi; + Qi Xk = Xk—1 + 5 (f (Xk—1, yx-1) + f (Xx, ¥x))
Fi =28 E Xk = Xk—1 + Atf (Xk_1, yk-1)
0=g(Xk_-1,Yk-1)
0 =g (Xx, Yx)
0 = g (xx, Yk)
Implicit Midpoint:
Xk = Xk—1 + 5S¢ (£ (xk—1, k1) + f (XK, Yx))
0=g(Xk_-1,Yk-1)

0= g (Xka Yk)
Solve discrete DAE with Newton's Method

State
x ~ N (X,P)

)

Zik—1 = 9 (Rik—1)

S :HkP I HT+Rk Output )
I{likzlaﬁ e z~ N (2,8)

Ox |§<k|k~1

Correction

_ Tg-1
Kk\k—l — Pk\k—lHk Sk\k—l

Rk = Kik-1 + Kik-1 (2x — Zijk-1)
Py = (I — Kyk—1Hk) Pyjie—1

Integration Robustness

Robustness to Process Noise Model

—Euler
104 PC
—Implicit Midpoint

Scaled Error Measure
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5 Sampling Rate Performance
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Scaled Error Measure
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Test System

Thirty Seven Bus System

Response to Cleared Fault

—

PSAT implementation of a PowerWorld test system 8_
with thirty seven buses, nine machines and seven ' 1.02}
turbine governors. A three phase fault occurs at bus
94 and is cleared. 1 01}

1 =

INo Fault Detection
Fault Detection
Fault Classification
B Local Estimation
I—Truthl

2 3 4
Time (Sec)

chine Frequency

M

Fault Handling

Local State Evolution

Local Variables
X = [5,w,ea,eﬁj, fﬂT
u=|v, Q]T
y = [iq, id]T }Local current as Algebraic Variable

Solve Local Dynamics
Xk = Xk—1 T %(f (XKk—1,Yk—1, Uk—1)
+f (xx, Yk, uk))
0 =g (Xk—1,Yk—1, Uk—1)
0 = g (XK, Yk, Uk)

Local Machine and
Control States

}Local Bus Voltage as Input

Global Uncertainty Propagation

L an an an
Fi = {8){1{1 vy _1 8Vk—‘

Ek—l\k—l = COV (Xk_1, Uk—1, Uy)
Pk = FiZi 1 1Fx + Q

(jS:auIt Handling Methods Performance
10 '

—No FauItIDetection
Fault Detection
Fault Classification

—Local Estimation
l

1\
XN T =

0 0.1 0.2 0.3
Fault Clearing Time (Sec)

Scaled Error Measure

Conclusion

Discussion

Comments

* Robustness and performance can be improved by replacing the commonly
used Euler's method with more advanced integration schemes

« Using a local estimation method drastically increases the ability of the
estimator to track the system through a fault having almost as good
performance as perfect classification

Accomplishments

« Demonstrated dynamic state estimation is possible for power systems and
can track the state through faults

* Proposed a framework using these state estimates for change point
detection and classification

Future Work

 Better characterize process and measurement noise distributions

* Developed better methods for uncertainty propagation particularly for
prediction and local estimation
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